Tungsram partnered with the Eötvös Lóránd Research Network to promote plant research in a bid to ensure the future of agriculture is less dependent on external conditions. The company’s lighting fixtures are used in research projects related to plant phenotyping that are sponsored by the European Union.

The Biological Research Centre of the Eötvös Lóránd Research Network in Szeged has been using Tungsram’s LED lamps developed for research purposes for two years in projects related to the European Plant Phenotyping Network called EPPN2020. The EPPN2020 is a research infrastructure project funded by the European Union that provides the European public and private scientific sectors with access to a wide range of state-of-the-art plant phenotyping facilities, techniques and methods, to help boost the exploitation of genetic and genomic resources available for crop improvement. The EPPN2020 specifically aims to facilitate the community progressing across the whole phenotyping pipeline, involving sensors and imaging techniques, data analysis in relation to environmental conditions, data interpretation in a biological context and meta-analyses of experiments carried out on different organs at different scales of plant organization.
The Biological Research Centre takes part in the EPPN2020 project as an infrastructure provider, meaning that foreign partners can apply to use their infrastructure for research projects with all related costs covered by the European Union, said Imre Vass, director of the Institute of Plant Biology at the Biological Research Centre. The institute operates a truly unique plant cultivation system, the only one of this kind in Hungary.
“We purchased 9 luminaries from Tungsram. We needed a great lighting system for this project with lamps that ensure the appropriate light spectrum and intensity. Previously we worked with sodium-vapour lamps, and even though these lamps provided the necessary light intensity, it was not possible to change the spectrum and intensity separately from each other,” Vass explained. He added that the Tungsram fixtures have two very important characteristics. Firstly, the spectrum of the lamps is fully adjustable, which allows users to fine-tune the spectrum for specific conditions. Secondly, these luminaries ensure that light intensity is homogenous over the entire cultivation area and researchers know exactly the extent of light intensity. The lamps are connected to a network and a computer controls the light intensity and the spectrum of each lamp, even separately. “In a project like ours, it is a very important criterion that throughout the entire plant cultivation system, the lighting is as homogeneous as possible so that any difference between plants is not caused by one receiving more light than the other,” Vass noted.
As part of the projects run at the institute, the growth and physiological condition of the plants are monitored by various remote sensing methods. The automatic system, in which the plants are moved on a conveyor belt, have computer-controlled irrigation to simulate drought stress, for example. At certain intervals, the plants are placed in front of cameras and a 3D laser scanner to monitor their size and condition. The projects focus mainly on drought and salinity tests as well as heavy metal contamination to examine how these external variants impact the growth of given plants.
“We are fully satisfied with how the lighting system works,” Vass stressed.

THERE ARE 37 MORE BLOG TO READ

Vissza a listára